Critical delays and polynomial eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Critical Delays and Polynomial Eigenvalue Problems
In this work we present a new method to compute the delays of delay differential equations (DDEs), such that the DDE has a purely imaginary eigenvalue. For delay differential equations with multiple delays, the critical curves or critical surfaces in delay space (that is, the set of delays where the DDE has a purely imaginary eigenvalue) are parameterized. We show how the method is related to o...
متن کاملPolynomial Optimization Problems are Eigenvalue Problems
Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...
متن کاملOn condition numbers of polynomial eigenvalue problems
In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...
متن کاملParallel iterative refinement in polynomial eigenvalue problems
Methods for the polynomial eigenvalue problem sometimes need to be followed by an iterative refinement process to improve the accuracy of the computed solutions. This can be accomplished by means of a Newton iteration tailored to matrix polynomials. The computational cost of this step is usually higher than the cost of computing the initial approximations, due to the need of solving multiple li...
متن کاملPerturbation theory for homogeneous polynomial eigenvalue problems
We consider polynomial eigenvalue problems P(A, α, β)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (α, β) ∈ C2. In this framework infinite eigenvalues are on the same footing as finite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is wellposed when its eigenvalues are simple. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2009
ISSN: 0377-0427
DOI: 10.1016/j.cam.2008.05.004